Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 17.060
1.
Int J Biol Macromol ; 269(Pt 2): 132044, 2024 May 01.
Article En | MEDLINE | ID: mdl-38701998

To develop natural complex materials as starch-dominated emulsifiers, pregelatinization was conducted on potato flour. The effects of gelatinization degrees (GDs, 0 %-50 %) on the structural characteristics, physicochemical properties, and emulsifying potentials of potato flour were investigated. Increasing GD of potato flour promoted protein aggregation on starch granules surfaces and transformed starch semicrystalline structures into melted networks. The emulsion stabilized with 50 % GD potato flour exhibited excellent storage stability (7 d) and gel-like behavior. With increasing GD from 0 to 50 %, the respective apparent viscosities and elastic moduli of emulsion increased from 21.4 Pa to 1126.7 Pa, and from 0.133 Pa·s to 1176.6 Pa·s, promoting the formation of a stable network structure in the emulsion. Fourier transform infrared spectra from emulsions with a continuous phase of >20 % GD displayed a new peak around 1740 cm-1, suggesting improved covalent interactions between droplets, thereby facilitating emulsion stability. Confocal laser scanning microscopy images indicated that droplets could be anchored in the melted networks and broken starch granules, inhibiting droplets coalescence. These results suggest that pregelatinization is a viable strategy for customizing natural starch-dominated emulsions.

2.
Int J Immunopathol Pharmacol ; 38: 3946320241240706, 2024.
Article En | MEDLINE | ID: mdl-38712735

Introduction: Bladder cancer represents a significant public health concern with diverse genetic alterations influencing disease onset, progression, and therapy response. In this study, we explore the multifaceted role of Solute Carrier Family 31 Member 1 (SLC31A1) in bladder cancer, a pivotal gene involved in copper homeostasis. Methods: Our research involved analyzing the SLC31A1 gene expression via RT-qPCR, promoter methylation via targeted bisulfite sequencing, and mutational status via Next Generation Sequencing (NGS) using the clinical samples sourced by the local bladder cancer patients. Later on, The Cancer Genome Atlas (TCGA) datasets were utilized for validation purposes. Moreover, prognostic significance, gene enrichment terms, and therapeutic drugs of SLC31A1 were also explored using KM Plotter, DAVID, and DrugBank databases. Results: We observed that SLC31A1 was significantly up-regulated at both the mRNA and protein levels in bladder cancer tissue samples, suggesting its potential involvement in bladder cancer development and progression. Furthermore, our investigation into the methylation status revealed that SLC31A1 was significantly hypomethylated in bladder cancer tissues, which may contribute to its overexpression. The ROC analysis of the SLC31A1 gene indicated promising diagnostic potential, emphasizing its relevance in distinguishing bladder cancer patients from normal individuals. However, it is crucial to consider other factors such as cancer stage, metastasis, and recurrence for a more accurate evaluation in the clinical context. Interestingly, mutational analysis of SLC31A1 demonstrated only benign mutations, indicating their unknown role in the SLC31A1 disruption. In addition to its diagnostic value, high SLC31A1 expression was associated with poorer overall survival (OS) in bladder cancer patients, shedding light on its prognostic relevance. Gene enrichment analysis indicated that SLC31A1 could influence metabolic and copper-related processes, further underscoring its role in bladder cancer. Lastly, we explored the DrugBank database to identify potential therapeutic agents capable of reducing SLC31A1 expression. Our findings unveiled six important drugs with the potential to target SLC31A1 as a treatment strategy. Conclusion: Our comprehensive investigation highlights SLC31A1 as a promising biomarker for bladder cancer development, progression, and therapy.


Copper Transporter 1 , DNA Methylation , Disease Progression , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Copper Transporter 1/genetics , Copper Transporter 1/metabolism , Gene Expression Regulation, Neoplastic , Male , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Promoter Regions, Genetic , Mutation , Middle Aged , Prognosis , Aged , Up-Regulation
3.
Microb Pathog ; 191: 106678, 2024 May 07.
Article En | MEDLINE | ID: mdl-38718954

A conditionally pathogenic bacterium called Bibersteinia trehalosi inhabits the upper respiratory tract of ruminants and is becoming a significant cause of pneumonia, especially in goats. In this study, we identified a gram-negative bacteria strain isolated from dead goat's lungs, which was named M01. By integrating the outcomes of its morphological and biochemical characterization with the investigation of the 16S rRNA gene sequence analysis, the isolate was identified as B. trehalosi. Based on antibiotic susceptibility tests, the isolate was shown to be resistant to ß-lactams, tetracyclines, and amphenicols. Its genome was discovered to comprise 2115 encoded genes and a circular chromosome measuring 2,345,568 bp using whole genome sequencing. Annotation of the VFBD database revealed that isolate M01 had four virulence genes encoding three virulence factors. The CARD database revealed that its genome has two antibiotic-resistance genes. Based on pathogenicity testing, isolate M01 was highly pathogenic to mice, primarily causing pneumonia, with an LD50 of 1.31 × 107 CFU/ml. Moreover, histopathology showed loss of alveolar structure and infiltration of lung inflammatory cells. Hence, the current study could provide sufficient information for prevention and control strategies for future epidemics of B. trehalosi in goat species.

4.
Int J Biol Macromol ; 269(Pt 2): 132196, 2024 May 07.
Article En | MEDLINE | ID: mdl-38723818

Enzymatic synthesis of biochemicals in vitro is vital in synthetic biology for its efficiency, minimal by-products, and easy product separation. However, challenges like enzyme preparation, stability, and reusability persist. Here, we introduced a protein scaffold and biosilicification coupled system, providing a singular process for the purification and immobilization of multiple enzymes. Using d-mannitol as a model, we initially constructed a self-assembling EE/KK protein scaffold for the co-immobilization of glucose dehydrogenase and mannitol dehydrogenase. Under an enzyme-to-scaffold ratio of 1:8, a d-mannitol yield of 0.692 mol/mol was achieved within 4 h, 2.16-fold higher than the free enzymes. The immobilized enzymes retained 70.9 % of the initial joint activity while the free ones diminished nearly to inactivity after 8 h. Furthermore, we incorporated the biosilicification peptide CotB into the EE/KK scaffold, inducing silica deposition, which enabled the one-step purification and immobilization process assisted by Spy/Snoop protein-peptide pairs. The coupled system demonstrated a comparable d-mannitol yield to that of EE/KK scaffold and 1.34-fold higher remaining activities after 36 h. Following 6 cycles of reaction, the immobilized system retained the capability to synthesize 56.4 % of the initial d-mannitol titer. The self-assembly co-immobilization platform offers an effective approach for enzymatic synthesis of d-mannitol and other biochemicals.

5.
Otol Neurotol ; 45(5): 521-528, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38728554

PURPOSE: To evaluate a system for otomicrosurgery based on 4K three-dimensional (3D) exoscope technology and apply it to cochlear implantation. METHODS: An open stereoscopic vision-based surgical system, which differs from traditional surgical microscopes, was created by utilizing 4K stereo imaging technology and combining it with low-latency 4K ultra-high-definition 3D display. The system underwent evaluation based on 57 cochlear implantation operations, three designed microscopic manipulations, and a questionnaire survey. RESULTS: The surgical images displayed by the 4K-3D exoscope system (4K-3D-ES) are stereoscopic, clear, and smooth. The use of 4K-3D-ES in cochlear implantation is not inferior to traditional microscopes in terms of intraoperative bleeding and surgical complications, and the surgical duration is not slower or may even be faster than when using traditional microscopes. The results of micromanipulation experiments conducted on 16 students also confirmed this and demonstrated that 4K-3D-ES can be easily adapted. Furthermore, additional advantages of 4K-3D-ES were gathered. Significantly enlarged and high-definition stereoscopic images contribute to the visualization of finer anatomical microstructures such as chordae tympani, ensuring safer surgery. Users feel more comfortable in their necks, shoulders, waists, and backs. Real-time shared stereoscopic view for multiple people, convenient for collaboration and teaching. The ear endoscope and 4K-3D-ES enable seamless switching on the same screen. High-definition 3D images and videos can be saved with just one click, making future publication and communication convenient. CONCLUSION: The feasibility and safety of 4K-3D-ES for cochlear implantation surgery have been demonstrated. The 4K-3D-ES also offers numerous unique advantages and holds clinical application and promotional value.


Cochlear Implantation , Humans , Cochlear Implantation/methods , Cochlear Implantation/instrumentation , Male , Female , Child , Imaging, Three-Dimensional/methods , Adult , Middle Aged , Microsurgery/methods , Microsurgery/instrumentation , Child, Preschool , Adolescent , Young Adult , Aged , Infant
6.
Scand Cardiovasc J ; 58(1): 2347290, 2024 Dec.
Article En | MEDLINE | ID: mdl-38733316

Objectives. The aim of this study was to investigate the expression of long non-coding RNA (lncRNA) brain and reproductive organ-expressed protein (BRE) antisense RNA 1 (BRE-AS1) in patients with acute myocardial infarction (AMI) and its effect on ischemia/reperfusion (I/R)-induced oxidative stress and apoptosis of cardiomyocytes. Methods. Serum BRE-AS1 levels in patients with AMI was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic and prognostic values of BRE-AS1 were evaluated. H9c2 cells were treated with hypoxia/reoxygenation to establish an in vitro myocardial infarction cell model. The levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were detected by enzyme-linked immunosorbent assay (ELISA). Levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined by commercial kits. Cell counting kit-8 (CCK-8) and flow cytometry were used to evaluate the cell viability and cell apoptosis. Results. The expression of BRE-AS1 in serum of patients with AMI is upregulated, which shows the clinical diagnostic value for AMI. In the I/R injury cell model, the knockout of BRE-AS1 can significantly alleviate the increase in TNF-α, IL-1ß, and IL-6 levels, inhibit the production of LDH and MDA, increase the activities of SOD and GSH-Px, promote the cell viability and suppress cell apoptosis. Conclusions. Abnormally elevated BRE-AS1 has a high diagnostic value for AMI as well as a prognostic value for major adverse cardiovascular events (MACEs). The elevation of BRE-AS1 promoted oxidative stress injury and cell apoptosis in vitro.


Apoptosis , Inflammation Mediators , Myocardial Infarction , Myocytes, Cardiac , Oxidative Stress , RNA, Long Noncoding , RNA, Long Noncoding/blood , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Humans , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/blood , Myocardial Infarction/genetics , Myocardial Infarction/diagnosis , Male , Middle Aged , Female , Inflammation Mediators/metabolism , Inflammation Mediators/blood , Cell Line , Animals , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/diagnosis , Myocardial Reperfusion Injury/genetics , Rats , Cytokines/metabolism , Cytokines/blood , Signal Transduction , Case-Control Studies , Aged , Up-Regulation
7.
BMC Nephrol ; 25(1): 158, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720274

BACKGROUND: Ureteropelvic junction obstruction (UPJO) is the most common cause of pediatric congenital hydronephrosis, and continuous kidney function monitoring plays a role in guiding the treatment of UPJO. In this study, we aimed to explore the differentially expressed proteins (DEPs) in the urinary extracellular vesicles(uEVs) of children with UPJO and determine potential biomarkers of uEVs proteins that reflect kidney function changes. METHODS: Preoperative urine samples from 6 unilateral UPJO patients were collected and divided into two groups: differential renal function (DRF) ≥ 40% and DRF < 40%.We subsequently used data-independent acquisition (DIA) to identify and quantify uEVs proteins in urine, screened for DEPs between the two groups, and analyzed biofunctional enrichment information. The proteomic data were evaluated by Western blotting and enzyme-linked immunosorbent assay (ELISA) in a new UPJO testing cohort. RESULTS: After one-way ANOVA, a P adj value < 0.05 (P-value corrected by Benjamin-Hochberg) was taken, and the absolute value of the difference multiple was more than 1.5 as the screening basis for obtaining 334 DEPs. After analyzing the enrichment of the DEPs according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment combined with the protein-protein interaction (PPI) network results, we selected nicotinamide adenine dinucleotide-ubiquinone oxidoreductase core subunit S1 (NDUFS1) for further detection. The expression of NDUFS1 in uEVs was significantly lower in patients with DRF < 40% (1.182 ± 0.437 vs. 1.818 ± 0.489, P < 0.05), and the expression level of NDUFS1 was correlated with the DRF in the affected kidney (r = 0.78, P < 0.05). However, the NDUFS1 concentration in intravesical urine was not necessarily related to the change in DRF (r = 0.28, P = 0.24). CONCLUSIONS: Reduced expression of NDUFS1 in uEVs might indicate the decline of DRF in children with UPJO.


Biomarkers , Extracellular Vesicles , Ureteral Obstruction , Child, Preschool , Female , Humans , Male , Biomarkers/urine , Extracellular Vesicles/metabolism , Hydronephrosis/urine , Hydronephrosis/congenital , Kidney/metabolism , Kidney Pelvis , Proteomics/methods , Ureteral Obstruction/urine , Ureteral Obstruction/congenital
8.
Head Face Med ; 20(1): 28, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730461

BACKGROUND: Few studies have examined the otologic symptoms of Coronavirus disease 2019 (COVID-19). The objective of this study was to identify the effect of COVID-19 on the characteristics and outcomes of patients who have otitis media with effusion (OME). METHODS: This case-control study compared the characteristics and outcomes of OME patients who did or did not have COVID-19. A total of 65 patients with previous COVID-19 and 40 patients who did not have COVID-19 (controls) were enrolled from October 1, 2022 to January 31, 2023 at a single institution in China. Demographics, medical histories, morbidities, hearing test results, treatments, and outcomes of the two groups were compared. RESULTS: The COVID-19 group had significantly better outcomes from OME than the control group, with higher rates of complete resolution (64.6% vs. 30%) and improvement (30.8% vs. 17.5%), and a lower rate of persistent OME (4.6% vs. 52.5%). Previous COVID-19 was independently associated with a more favorable OME outcome in three multivariate logistic regression models. The COVID-19 group also had a greater improvement in hearing threshold based on air-bone gap measurements. CONCLUSION: The outcomes of OME patients who had previous COVID-19 were generally good, in that most patients responded well to treatment and achieved complete resolution or improvement within one month.


COVID-19 , Otitis Media with Effusion , Humans , COVID-19/epidemiology , COVID-19/complications , Male , Female , Case-Control Studies , Middle Aged , Adult , China/epidemiology , SARS-CoV-2 , Aged , Treatment Outcome , Retrospective Studies , Pandemics
9.
Article En | MEDLINE | ID: mdl-38730219

Reclaimed asphalt pavement (RAP) is a valuable material that can be recycled and reused in road engineering to reduce environmental impact, resource utilization, and economic costs. However, the application of RAP in road engineering presents both opportunities and challenges. This study visually analyzes the knowledge background, research status, and latest knowledge structure of literature related to RAP using scientific metric methods such as VOSviewer and Citespace. The Web of Science (WoS) core collection database identified 2963 research publications from 2000 to 2022. Collaborative networks between highly cited references, journals, authors, academic institutions, countries, and funding organizations are analyzed in this study, along with a co-occurrence analysis of keywords for the RAP research publications. Results showed that the USA has long been a leader in RAP research, China surpassed the USA in annual publication output in 2019, increasing from 2 publications in 2002 to 177 publications in 2022, and has made significant investments in technological aspects. Chang'an University ranked first in total publication output (131 publications, 4.4%). Current major research themes include road performance, recycling technology, regeneration mechanisms, and the life cycle assessment of RAP. In addition, based on cluster analysis of keywords, text content analysis, and SWOT analysis, this study also discusses RAP's challenges and future development directions in road engineering. These findings provide scholars with valuable information to gain insight into technological advances and challenges in the field of RAP.

10.
Heliyon ; 10(9): e30721, 2024 May 15.
Article En | MEDLINE | ID: mdl-38742075

Purpose: To evaluate abnormalities in serum and aqueous humor uric acid (UA) levels in primary angle closure glaucoma (PACG). Methods: Patients with PACG and age-similar and gender-similar controls (patients scheduled for cataract extraction) were enrolled prospectively. Serum UA levels were determined by enzymatic colorimetry; aqueous humor UA levels by Enzyme-Linked ImmunoSorbent Assay. A t-test was used to compare UA levels between PACG patients and controls, with one-way ANOVA used to compare levels across PACG subgroups with differing disease severity. Comparisons between PACG patients and controls were adjusted for systemic and ocular confounding factors using binary logistic regression. Results: In all, 131 PACG patients and 112 controls were included. The serum UA level was 266 ± 69 µmol/L in the PACG group and 269 ± 73 µmol/L in the control group (p = 0.71). The aqueous humor UA level was 35.4 ± 8.2 µmol/L in the PACG group and 53.9 ± 18.6 µmol/L in the control group (p < 0.001). This difference remained significant after adjusting for age, gender, systolic blood pressure, diastolic blood pressure, body mass index, axial length, central corneal thickness, anterior chamber depth, lens thickness, white-to-white distance, corneal endothelial cell density, and serum UA level (odds ratio: 0.88, 95 % confidence interval: 0.83-0.93, p < 0.001). Conclusion: Aqueous humor UA levels differ between PACG patients and controls, but serum UA levels do not. This indicates that local UA plays a role in the pathogenesis of PACG, but systemic UA does not.

11.
Front Psychiatry ; 15: 1349989, 2024.
Article En | MEDLINE | ID: mdl-38742128

Objective: Although extensive structural and functional abnormalities have been reported in schizophrenia, the gray matter volume (GMV) covariance of the amygdala remain unknown. The amygdala contains several subregions with different connection patterns and functions, but it is unclear whether the GMV covariance of these subregions are selectively affected in schizophrenia. Methods: To address this issue, we compared the GMV covariance of each amygdala subregion between 807 schizophrenia patients and 845 healthy controls from 11 centers. The amygdala was segmented into nine subregions using FreeSurfer (v7.1.1), including the lateral (La), basal (Ba), accessory-basal (AB), anterior-amygdaloid-area (AAA), central (Ce), medial (Me), cortical (Co), corticoamygdaloid-transition (CAT), and paralaminar (PL) nucleus. We developed an operational combat harmonization model for 11 centers, subsequently employing a voxel-wise general linear model to investigate the differences in GMV covariance between schizophrenia patients and healthy controls across these subregions and the entire brain, while adjusting for age, sex and TIV. Results: Our findings revealed that five amygdala subregions of schizophrenia patients, including bilateral AAA, CAT, and right Ba, demonstrated significantly increased GMV covariance with the hippocampus, striatum, orbitofrontal cortex, and so on (permutation test, P< 0.05, corrected). These findings could be replicated in most centers. Rigorous correlation analysis failed to identify relationships between the altered GMV covariance with positive and negative symptom scale, duration of illness, and antipsychotic medication measure. Conclusion: Our research is the first to discover selectively impaired GMV covariance patterns of amygdala subregion in a large multicenter sample size of patients with schizophrenia.

12.
Front Endocrinol (Lausanne) ; 15: 1301213, 2024.
Article En | MEDLINE | ID: mdl-38742199

Purpose: To investigate the relationship between bone turnover markers (BTMs) and thyroid indicators in Graves' disease (GD) and to further assess predictive value of changes in early stage retrospectively. Methods: We studied 435 patients with GD and 113 healthy physical examiners retrospectively and followed up these two groups of patients after 6 months. We investigated the correlations between BTMs and other 15 observed factors, and analyzed the predictive value of FT3 and FT4 before and after treatment (FT3-P/FT3-A, FT4-P/FT4-A) on whether BTMs recovered. Results: The levels of thyroid hormones and BTMs in GD group were significantly higher than those in control group (P < 0.05) and decreased after 6 months of treatment. FT3, W, Ca and ALP were independent factors in predicting the elevation of OST. Duration of disease, FT3, TSH and ALP were independent factors in predicting the elevation of P1NP. Age, duration of disease, TRAb and ALP were independent factors in predicting the elevation of CTX-1. The AUC of FT3-P/FT3-A and FT4-P/FT4-A for predicting OST recovery were 0.748 and 0.705 (P < 0.05), respectively, and the cut-off values were 0.51 and 0.595. There was no predictive value for P1NP and CTX-1 recovery (P > 0.05). Conclusion: BTMs were abnormally elevated in GD and were significantly correlated with serum levels of FT3, FT4, TRAb, Ca, and ALP. FT3 decreased more than 51% and FT4 dropped more than 59.5% after 6 months of treatment were independent predictors for the recovery of BTMs in GD.


Biomarkers , Bone Remodeling , Graves Disease , Predictive Value of Tests , Humans , Male , Female , Graves Disease/blood , Graves Disease/drug therapy , Graves Disease/metabolism , Adult , Biomarkers/blood , Retrospective Studies , Middle Aged , Thyroid Gland/metabolism , Bone and Bones/metabolism , Thyroid Hormones/blood , Case-Control Studies , Prognosis , Antithyroid Agents/therapeutic use , Thyroxine/blood , Triiodothyronine/blood , Follow-Up Studies
13.
Front Endocrinol (Lausanne) ; 15: 1336402, 2024.
Article En | MEDLINE | ID: mdl-38742197

Diabetic kidney disease (DKD), a significant complication associated with diabetes mellitus, presents limited treatment options. The progression of DKD is marked by substantial lipid disturbances, including alterations in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD, potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism reprogramming, and immune modulation of gut microbiota (thus impacting the liver-kidney axis). The elucidation of these mechanisms opens new potential therapeutic pathways for DKD management. This research explores the link between lipid metabolism disruptions and DKD onset.


Diabetic Nephropathies , Lipid Metabolism , Humans , Diabetic Nephropathies/metabolism , Animals , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/complications , Gastrointestinal Microbiome
14.
JCI Insight ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38713510

Multiple myeloma is a largely incurable and life-threatening malignancy of antibody-secreting plasma cells. An effective and widely available animal model that recapitulates human myeloma and related plasma cell disorders is lacking. We show that busulfan-conditioned hIL-6 transgenic NSG mice (NSG+hIL6) reliably support the engraftment of malignant and pre-malignant human plasma cells including from patients diagnosed with monoclonal gammopathy of undetermined significance, pre- and post-relapse myeloma, plasma cell leukemia, and AL amyloidosis. Consistent with human disease, NSG+hIL6 mice engrafted with patient-derived myeloma cells, developed serum M spikes, and a majority developed anemia, hypercalcemia, and/or bone lesions. Single cell RNA sequencing showed non-malignant and malignant cell engraftment, the latter expressing a wide array of mRNAs associated with myeloma cell survival and proliferation. Myeloma engrafted mice given CAR T-cells targeting plasma cells or bortezomib experienced reduced tumor burden. Our results established NSG+hIL6 mice as an effective patient derived xenograft model for study and preclinical drug development of multiple myeloma and related plasma cell disorders.

15.
Drug Des Devel Ther ; 18: 1439-1457, 2024.
Article En | MEDLINE | ID: mdl-38707616

Background: Acteoside, an active ingredient found in various medicinal herbs, is effective in the treatment of diabetic kidney disease (DKD); however, the intrinsic pharmacological mechanism of action of acteoside in the treatment of DKD remains unclear. This study utilizes a combined approach of network pharmacology and experimental validation to investigate the potential molecular mechanism systematically. Methods: First, acteoside potential targets and DKD-associated targets were aggregated from public databases. Subsequently, utilizing protein-protein interaction (PPI) networks, alongside GO and KEGG pathway enrichment analyses, we established target-pathway networks to identify core potential therapeutic targets and pathways. Further, molecular docking facilitated the confirmation of interactions between acteoside and central targets. Finally, the conjectured molecular mechanisms of acteoside against DKD were verified through experimentation on unilateral nephrectomy combined with streptozotocin (STZ) rat model. The underlying downstream mechanisms were further investigated. Results: Network pharmacology identified 129 potential intersected targets of acteoside for DKD treatment, including targets such as AKT1, TNF, Casp3, MMP9, SRC, IGF1, EGFR, HRAS, CASP8, and MAPK8. Enrichment analyses indicated the PI3K-Akt, MAPK, Metabolic, and Relaxin signaling pathways could be involved in this therapeutic context. Molecular docking revealed high-affinity binding of acteoside to PIK3R1, AKT1, and NF-κB1. In vivo studies validated the therapeutic efficacy of acteoside, demonstrating reduced blood glucose levels, improved serum Scr and BUN levels, decreased 24-hour urinary total protein (P<0.05), alongside mitigated podocyte injury (P<0.05) and ameliorated renal pathological lesions. Furthermore, this finding indicates that acteoside inhibits the expression of pyroptosis markers NLRP3, Caspase-1, IL-1ß, and IL-18 through the modulation of the PI3K/AKT/NF-κB pathway. Conclusion: Acteoside demonstrates renoprotective effects in DKD by regulating the PI3K/AKT/NF-κB signaling pathway and alleviating pyroptosis. This study explores the pharmacological mechanism underlying acteoside's efficacy in DKD treatment, providing a foundation for further basic and clinical research.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , Glucosides , Molecular Docking Simulation , Network Pharmacology , Phenols , Polyphenols , Streptozocin , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Animals , Rats , Glucosides/pharmacology , Glucosides/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Male , Phenols/pharmacology , Phenols/chemistry , Rats, Sprague-Dawley
16.
J Environ Manage ; 359: 120963, 2024 May 09.
Article En | MEDLINE | ID: mdl-38728980

An efficient recycling process is developed to recover valuable materials from overhaul slag and reduce its harm to the ecological environment. The high temperature sulfuric acid roasting - water leaching technology is innovatively proposed to prepare Li2CO3 from overhaul slag. Under roasting conditions, fluorine volatilizes into the flue gas with HF, lithium is transformed into NaLi(SO4), aluminum is firstly transformed into NaAl(SO4)2, and then decomposed into Al2O3, so as to selective extraction of lithium. Under the optimal roasting - leaching conditions, the leaching rate of lithium and aluminum are 95.6% and 0.9%, respectively. Then the processes of impurity removal, and settling lithium are carried out. The Li2CO3 with recovery rate of 72.6% and purity of 98.6% could be obtained under the best settling lithium conditions. Compared with the traditional process, this work has short flow, high controllability, remarkable technical, economic, and environmental benefits. This comprehensive recycling technology is suitable for overhaul slag, and has great practical application potential for the disposal of other hazardous wastes in electrolytic aluminum industry.

17.
Cell Mol Life Sci ; 81(1): 211, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722330

Spermatogonial stem cells (SSCs) are capable of transmitting genetic information to the next generations and they are the initial cells for spermatogenesis. Nevertheless, it remains largely unknown about key genes and signaling pathways that regulate fate determinations of human SSCs and male infertility. In this study, we explored the expression, function, and mechanism of USP11 in controlling the proliferation and apoptosis of human SSCs as well as the association between its abnormality and azoospermia. We found that USP11 was predominantly expressed in human SSCs as shown by database analysis and immunohistochemistry. USP11 silencing led to decreases in proliferation and DNA synthesis and an enhancement in apoptosis of human SSCs. RNA-sequencing identified HOXC5 as a target of USP11 in human SSCs. Double immunofluorescence, Co-immunoprecipitation (Co-IP), and molecular docking demonstrated an interaction between USP11 and HOXC5 in human SSCs. HOXC5 knockdown suppressed the growth of human SSCs and increased apoptosis via the classical WNT/ß-catenin pathway. In contrast, HOXC5 overexpression reversed the effect of proliferation and apoptosis induced by USP11 silencing. Significantly, lower levels of USP11 expression were observed in the testicular tissues of patients with spermatogenic disorders. Collectively, these results implicate that USP11 regulates the fate decisions of human SSCs through the HOXC5/WNT/ß-catenin pathway. This study thus provides novel insights into understanding molecular mechanisms underlying human spermatogenesis and the etiology of azoospermia and it offers new targets for gene therapy of male infertility.


Apoptosis , Cell Proliferation , Homeodomain Proteins , Wnt Signaling Pathway , Humans , Male , Apoptosis/genetics , Cell Proliferation/genetics , Wnt Signaling Pathway/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Azoospermia/metabolism , Azoospermia/genetics , Azoospermia/pathology , Spermatogonia/metabolism , Spermatogonia/cytology , Spermatogenesis/genetics , Adult Germline Stem Cells/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Testis/metabolism , Testis/cytology , Thiolester Hydrolases
18.
Arthrosc Tech ; 13(4): 102904, 2024 Apr.
Article En | MEDLINE | ID: mdl-38690354

Arthroscopic repair of Bankart injury is the first choice for the treatment of anterior shoulder instability. How to avoid recurring shoulder joint dislocation is a challenge, especially when combined with Hill-Sachs lesions. The arthroscopy technology allows for broader vision and less surgical trauma but is limited by a smaller operating space. At present, extensive descriptions about the surgical procedure of arthroscopic Bankart repair have been published. In this Technical Note, we describe the use of remplissage filling with Hill-Sachs lesion combined with Bankart repair to further improve the surgical accuracy and clinical efficacy. In particular, the application of single needle-assisted outside-in remplissage technique and Bankart repair is introduced in detail.

19.
Article En | MEDLINE | ID: mdl-38691283

In order to transform rural development, the implementation of disaster resettlement projects should not only reduce environmental hazards, but also improve the sustainability of natural resources and household well-being. This article assesses sustainable household well-being (SHWB) and natural resource dependence using a quantitative survey of rural China. It identifies four classes of relationship between SHWB and natural resource dependence and explores the impact of disaster resettlement on these classes. The result shows that rural households that participate in disaster resettlement as well as in voluntary relocation, centralized relocation, and new-stage relocation are more likely to achieve "high well-being and low dependence." However, the overall SHWB level of the relocated households is lower than that of the non-relocated households, and disaster resettlement also has a significant positive impact on the "low well-being and low dependence" class. It is recommended that governments implement measures to address these issues. The findings in this article could shed light on the impact of resettlement programs on rural households elsewhere.

20.
PLoS One ; 19(5): e0299943, 2024.
Article En | MEDLINE | ID: mdl-38701085

Spending time outdoors is associated with increased time spent in physical activity, lower chronic disease risk, and wellbeing. Many studies rely on self-reported measures, which are prone to recall bias. Other methods rely on features and functions only available in some GPS devices. Thus, a reliable and versatile method to objectively quantify time spent outdoors is needed. This study sought to develop a versatile method to classify indoor and outdoor (I/O) GPS data that can be widely applied using most types of GPS and accelerometer devices. To develop and test the method, five university students wore an accelerometer (ActiGraph wGT3X-BT) and a GPS device (Canmore GT-730FL-S) on an elastic belt at the right hip for two hours in June 2022 and logged their activity mode, setting, and start time via activity diaries. GPS trackers were set to collect data every 5 seconds. A rule-based point cluster-based method was developed to identify indoor, outdoor, and in-vehicle time. Point clusters were detected using an application called GPSAS_Destinations and classification were done in R using accelerometer lux, building footprint, and park location data. Classification results were compared with the submitted activity diaries for validation. A total of 7,006 points for all participants were used for I/O classification analyses. The overall I/O GPS classification accuracy rate was 89.58% (Kappa = 0.78), indicating good classification accuracy. This method provides reliable I/O clarification results and can be widely applied using most types of GPS and accelerometer devices.


Accelerometry , Exercise , Geographic Information Systems , Humans , Geographic Information Systems/instrumentation , Accelerometry/instrumentation , Accelerometry/methods , Male , Female , Exercise/physiology , Young Adult , Adult , Time Factors
...